
 Example Applications

Cascading Drop-downs

This example demonstrates two ways to manage dynamic drop-downs where a selection in one drop-down
can dynamically affect the choices in a secondary drop-down.
Note that while this example uses a drop-down for the initial selection, it could just as easily be a radio
button group. In either case, only a single initial selection can be made.

Method 1:

This option uses multiple drop-downs for the secondary (shade) selection. These drop-down objects are
already pre-populated with the secondary selections and are hidden on the page until an initial selection is
made.

When a selection is made in the ‘Color’ drop-down (Check drop-down changes field data), the following logic
is triggered:

 Example Applications

1 & 2: Set Property commands to move the related shade drop-down into the correct position. Note that
you could place all secondary drop-downs in the same position, in which case this logic would be redundant.

3: A Set State command shows the related shade drop-down but keeps the others hidden. Note that if no
color selection is made, all three shade drop-downs are hidden.

4 & 5: Set Field commands to reset the unused shade drop-downs; this means that if a user selects a color
and a related shade but then changes their choice of color, then the related shade for the previous color is
reset to blank.

As there are multiple shade drop-down objects, there are multiple objects to look in to discover the actual
shade selection. From a reporting perspective, this would make it difficult, if not impossible, to report on the
shade selection.
For that reason, in the example, you will see a ‘normally hidden’ helper field into which the shade selection
is passed. Check the logic on the individual shade selection ‘drop-down changes’ behavior events, and you
will see a Copy Fields command that manages this. By doing so, there is now a single field where the shade
selection will be stored and readily available for reporting.

Also, note that on the color drop-down is shown event, there is a Run Behavior command that will trigger
the same logic on the color drop-down changes event. This behavior will ensure that when the application is
opened for the first time, no shade drop-downs will be visible and, probably more importantly, when an
instance is re-opened later, typically in a workflow environment, the shade drop-down and its selection
made previously will remain visible.

Method 2:

This option uses only a single drop-down object for the secondary selection.
When a selection is made in the Department drop-down, behavior is triggered using the Set Selection Items
command that will dynamically populate the secondary employee drop-down object.

Also, note that this method to populate a drop-down object will lead to the first populated option being pre-
selected. To prevent this from happening, we can use a Set Field command to set the drop-down value to
zero, removing any selection in the employee drop-down object after the population.

Summary:
An example is included with this document. Import it into your account, and it should work without any set-
up necessary. Just use the preview feature to check the logic.

This example assumes that the secondary drop-downs (shade & employee) options are known at design
time. Suppose the secondary drop-down options are unknown at design time but might be taken from a
dynamically changing third-party data source. In that case, the second method could be modified so that the
options are populated using a Connect command after making the primary selection.

